diff --git a/src/js/generateGenetics.js b/src/js/generateGenetics.js index ae5c76b2d6e57da247e33ab8bba0b7847d576334..b93f711697172ecf44f8f234d8b7fb845124daa2 100644 --- a/src/js/generateGenetics.js +++ b/src/js/generateGenetics.js @@ -10,7 +10,7 @@ window.generateGenetics = (function() { let V; // intelligence and face parameters are the same so we can use the same distribution for both values - const fuzzy = (a, b) => normalRandInt((a+b)/2, 20); + const fuzzy = (a, b) => Math.clamp(normalRandInt((a+b)/2, 20), -100, 100); function generateGenetics(actor1, actor2, x) { V = State.variables; @@ -564,13 +564,13 @@ window.generateGenetics = (function() { let smarts; if (mother.ID === -1) { if (actor2 === -6) { - smarts = normalRandInt(95, 2.5); + smarts = Math.clamp(normalRandInt(95, 2.5), -100, 100); } else if (father !== 0) { smarts = fuzzy(father.intelligence, mother.intelligence); // player is considered "good stock" while (smarts < 50) fuzzy(father.intelligence, mother.intelligence); } else { - smarts = normalRandInt(75, 12.5); + smarts = Math.clamp(normalRandInt(75, 12.5), -100, 100); } } else if (father !== 0) { smarts = fuzzy(father.intelligence, mother.intelligence); @@ -613,14 +613,14 @@ window.generateGenetics = (function() { face = -100; } else if (mother.ID === -1) { if (actor2 === -6) { - face = normalRandInt(95, 2.5); + face = Math.clamp(normalRandInt(95, 2.5), -100, 100); } else if (father !== 0) { face = fuzzy(father.face, mother.face); // the player is considered "good stock" while (face < 50) face = fuzzy(father.face, mother.face); } else { - face = normalRandInt(60, 20); + face = Math.clamp(normalRandInt(60, 20), -100, 100); } } else if (father !== 0) { face = fuzzy(father.face, mother.face); diff --git a/src/js/utilJS.js b/src/js/utilJS.js index 7b5f029ac51753f63542510f1b46f45ff60822b8..e3c55587afe30d6d4d093d1c7c64e6387d4008cc 100644 --- a/src/js/utilJS.js +++ b/src/js/utilJS.js @@ -891,20 +891,8 @@ window.gaussianPair = function() { return [r * Math.cos(sigma), r * Math.sin(sigma)]; }; -// generate a random number with a normal distribution -// the mean is 0 and the variance is 1 -// NOTE: the result is NOT bounded! -window.normalRandom = function() { - let u1 = 0; - let u2 = 0; - // range must be (0,1) instead of [0,1) - while(u1 === 0) u1 = Math.random(); - while(u2 === 0) u2 = Math.random(); - return Math.sqrt(-2.0*Math.log(u1)) * Math.cos(2.0*Math.PI*u2); -}; - // generate a random integer with a normal distribution -window.normalRandInt = (mean, scale) => Math.floor(mean + normalRandom() * scale); +window.normalRandInt = (mean, scale) => Math.floor(mean + gaussianPair()[0] * scale); /* A categorizer is used to "slice" a value range into distinct categories in an efficient manner.